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[1] We investigate biogeophysical processes that cause differential frost heave in
nonsorted circles north of the Alaska’s Brooks Range. The main objective is the
development of a numerical thermo-mechanical model of a nonsorted circle. The presented
model includes mass, momentum and energy conservation laws for water, ice and soil.
We applied this model to simulate differential frost heave at the Franklin Bluffs site
and obtained a good quantitative agreement with measured dynamics of soil
temperature, water content, and frost heave. For other locations such as at the Sagwon
Hills and Howe Island sites we obtained qualitative agreement with frost-heave
measurements. Sensitivity analysis shows that the most active development of differential
frost heave occurs for nonsorted circles within waterlogged areas, as observed in field
measurements. For well drained sites, model results and field observations show that
the differential frost heave is much smaller in magnitude comparing to that of the
water-logged sites. Sensitivity of the model to alternation of the vegetation cover shows
that a strong heterogeneity in the vegetation cover promotes active development of the
differential frost heave. For nonsorted circles with vegetation on top of the circle, the
computed differential heave is less pronounced. The radius of the nonsorted circle
influences the magnitude of the frost heave. The computed maximum frost heave in the
center of the circle corresponds to 1–1.5 meter diameter nonsorted circles. For nonsorted
circles with larger diameters, computed frost heave in the center of a circle is smaller
compared to the heave at the circle circumference.

Citation: Nicolsky, D. J., V. E. Romanovsky, G. S. Tipenko, and D. A. Walker (2008), Modeling biogeophysical interactions in
nonsorted circles in the Low Arctic, J. Geophys. Res., 113, G03S05, doi:10.1029/2007JG000565.

1. Introduction

[2] Extensive areas of the Arctic landscape are character-
istically patterned into small-scale ground features called
nonsorted circles. Nonsorted circles are 0.5 to 3.0 meter
diameter patches of barren or sparsely vegetated soil formed
by frost action [van Everdingen, 2002] and ordinarily
develop on poorly drained tundra sites, see Figure 1. These
features are associated with development of specific micro-
relief, vegetation, and soil that strongly affect the active-layer
thermal and hydrological properties, and soil microclimate.
Therefore, they are an important component of the Arctic
landscape. Changes to these systems in relation to changes in
climate could affect energy and carbon mass exchange at the
tundra surface with possible feedbacks to the climate.
However, formation, development, maintenance of such
ground patterns and their interaction with vegetation is

poorly understood [Walker et al., 2004]. The objective of
this study is to numerically model observed frost heave in
nonsorted circles and gain understanding of interactions
between water fluxes, temperature dynamics as influenced
by the plant canopy, and the motion of soil particles and as a
result the heave of ground surface.
[3] As a part of the biocomplexity of patterned ground

project [Walker et al., 2008], we observed nonsorted circles
at several locations near the Dalton Highway in Alaska
(Figure 2). We instrumented several nonsorted circles at
these sites with sensors that measure soil temperature,
moisture content and the maximum frost heave [Walker et
al., 2004]. Our measurements revealed that the maximum
frost heave in a circle interior was 2 to 8 times greater
compared to frost heave of surrounding the circle tundra
(see the right plot in Figure 2). This phenomenon is referred
to as the differential frost heave. The largest frost heave
occurred on poorly drained circles with fine-grained sedi-
ments at Franklin Bluffs and Sagwon Hills. In contrast, at a
site with near surface gravel deposits and available water
supply near West Dock, Alaska North Slope, we observed
no signs of nonsorted circle occurrence, and at a well
drained site with fine sediment located at Howe Island,
we observed ‘‘nonheaving’’ nonsorted circles.
[4] Our field observations support the idea that the frost

heave of saturated soil very often cannot be explained solely
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by the expansion of liquid water transforming into ice
crystals. It has been shown that under freezing conditions,
liquid water can be transported towards the partially frozen
soil [Powers and Helmuth, 1953; Litvan, 1972; Williams
and Smith, 1989; Dash et al., 1995]. At temperatures below
0!C confined water can partially remain liquid provided that
it has lower pressure relative to the adjacent ice, provoking
in turn a cryogenic suction of distant water from the
unfrozen soil. This type of liquid-water transport has been
identified as the driving force of the frost heave [Taber,
1918, 1929, 1930]. Other early contributions to frost-heave
research are described in Beskow [1935]. Although the
systematic studies were initiated in 1920s, efforts towards
producing predictive tools did not start till decades later.
One approach described frost-heave capillary theory based
on the Laplace surface tension [Penner, 1959; Everett,
1961]. Similar ideas were explored in O‘Neill and Miller

[1985] and Fowler [1989], where it was suggested that the
transport of unfrozen liquid water is due to water pressure
gradients arising from temperature-dependent variations in
the curvature of the pore ice-water interfaces. In addition to
the curvature-pressure model, there are other numerous
experimental [Williams, 1982; Watanabe and Mizoguchi,
2000; Viklander and Eigenbrod, 2000] and theoretical
[Konrad and Morgenstern, 1981; Wettlaufer and Worster,
1995; Li et al., 2002; Peterson and Krantz, 2003; Rempel et
al., 2004; Coussy, 2005; Michalowskin and Zhu, 2006]
studies of freezing ground, but many of them lack descrip-
tion of soil rheology. In this study we apply a general
thermo-mechanical model [Blanchard and Fremond, 1982;
Fremond and Mikkola, 1991; Mikkola and Hartikainen,
2001] of frost heave to simulate the observed frost heave
in nonsorted circles. In this paper, we assume that the soil is
a homogeneous mixture of liquid water, ice and soil

Figure 1. A photography (left) and schematic description (right) of nonsorted circle.

Figure 2. Locations of sites (left) at which several nonsorted circles were monitored. Frost-heave
measurements (right) along the cross-section of a nonsorted circle in April 2002.
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skeleton. We assume that the skeleton and ice undergo small
deformations described by linear elasticity, and the linear
momentum conservation principles can be exploited in the
quasi-static from. In our model, we also neglect ice flow
relative to the soil skeleton. The body forces due to gravity
are neglected too. The liquid water is an incompressible and
nonviscous fluid that changes its phase and is always in
thermodynamical equilibrium with ice. The chemical po-
tential of the liquid water is modified due to adsorption to
the soil skeleton.
[5] Based on observations from field experiments and

results of our numerical simulations, we conclude that
heterogeneity in surface characteristics and soil properties
due to the presence of a heterogeneous plant canopy
together with presence of water-logged conditions are
among the primarily requirements necessary for occurrence
of differential frost heave observed in nonsorted circles. In
this article we provide a description of nonsorted circles, a
numerical model of the frost heave, and sensitivity study of
the developed numerical model. Section-wise this article is
organized as follows. In section 2, we highlight key phys-
ical processes and mechanisms presumably causing the
differential frost heave in nonsorted circles. In section 3,
we briefly review a general thermo-mechanical model of
soil freezing. In section 4, we summarize the system of
governing equations, parametrization of soil properties, and
boundary conditions. Section 5 addresses the finite element
implementation of the thermo-mechanical model of soil
freezing. In section 6, we focus on hydrologically closed
systems, in which the cryogenic forces causing the water
migration are not considered. In section 7, we analyze
effects of the cryogenic suction in hydrologically open
and closed systems. In section 8, we apply the model to a
specific nonsorted circle located at the Franklin Bluffs site.
In section 9, we evaluate sensitivity of the model with
respect to soil properties, vegetation cover, and geometrical

dimensions of the circles. Finally, in section 10, we provide
conclusions and state the main results.

2. Physical Description of Nonsorted Circles and
Involved Physical Processes

[6] In this section, we highlight key physical processes
and mechanisms presumably causing the differential frost
heave in nonsorted circles. Before proceeding to this task
we provide some definitions and describe soil thermal,
hydrological and rheological properties.
[7] The area surrounding the circle is called the inter-

circle area and has a relatively thick mat of vegetation as
well as a layer of organically enriched soil (see Figure 1).
Incorporation of the organic material into soil leads to
heterogeneity in thermal properties, structure and water
holding capacity of soil. For example, different soil textures
indicate distinctive thermal conductivities, soil porosity,
and dependence of the unfrozen liquid-water content on
temperature. Besides variances in thermal and hydrological
properties, the nonsorted circle has heterogeneous rheolog-
ical properties due to structural change that takes place
during annual freeze-thaw cycles. This structural change is
caused by freezing water that creates a microscopic struc-
ture in a form of a sequence of ice lenses. Figure 3 shows
the ice lenses in a soil core samples from a nonsorted circle
at the Franklin Bluffs site, Alaska. Each ice lens separates
soil particles, causes the observed lenticular soil structure,
and hence lessen structural solidity of soil. In Graham and
Au [1985] and Qi et al. [2006], it was shown that soil has a
long-term memory of its previous freeze/thaw cycles which
in particular reduce bonding between soil particles. To
account for reduction in the bonding, we assume that soil
is more structurally solid if it has fewer ice lenses. From a
soil core obtained by drilling in winter, we observed that
the circle has many more ice lenses than in the intercircle
area, and these lenses can be found even at the significant

Figure 3. Core samples obtained from the intercircle area (left photo) and circle (right photo) at the
Franklin Bluffs site during winter. On the right photograph, a sequence of horizontally oriented ice lenses
can be observed. The vertical scale is in centimeters.
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depth of 0.5 meters (see Figure 3). Therefore, we assume
that soil in the intercircle is more structurally solid than in
the circle. Despite these heterogeneities, the difference
between observed active-layer depths (maximum depth of
summer thaw) of the circle and intercircle does not exceed
0.3 meters in the majority of cases.
[8] It is well known that frost heave is caused by

volumetric water expansion during freezing. However, as
mentioned earlier, the observed frost-heave heights do not
seem to be exclusively dependent on the active-layer depth,
and on volumetric water content in the soil before freezing.
For example, from field observations at the Franklin Bluffs
site, we know that the active-layer thicknesses for the circle
and intercircle areas are 0.9 and 0.8 meters, respectively,
and volumetric water content in these areas during summer
is almost the same. Therefore, if water does not migrate, the
frost heave is computable and its hight is about 3.0–3.5 cm
for both circle and intercircle areas, which contradicts the
observations within a circle at Franklin Bluffs site, see
Figure 2. Thus, we hypothesize that the key physical
process responsible for the differential frost heave is water
redistribution in the nonsorted circle due to heterogeneity in
soil properties and in ground surface conditions, first of all
in vegetation cover. In Figure 4, we show fundamental
physical processes occurring in the nonsorted circle in the
fall when it freezes. We describe nature of these processes
and their implications to the observed values of the differ-
ential frost heave as follows.
[9] When the ground surface temperature becomes lower

than 0 !C water, trapped in soil pores starts to freeze, in
Figure 4 the direction of the heat flux during freezing is
shown by red dashed arrows. In several classical works, it
was demonstrated that gradual freezing of water at sub-zero

temperatures, which takes place under temperature gra-
dients, creates cryogenic suction inducing flow of water
towards a freezing region along the temperature gradient
[e.g., O‘Neill and Miller, 1985]. Since the circle lacks an
organic layer, frost propagates through it faster, causes
stronger water migration into the circle, and consequently
results in more intensive ice-lens formation, and results in
more frost heave within the circle than in the intercircle
area. A secondary consequence of the heave is the reduced
thickness of the snowpack above the circle compared to the
intercircle area (Figure 4). The heterogeneous snow distri-
bution further enhances the thermal heterogeneity of the soil
surface. An absence of a vegetation mat within the heaving
areas in conjunction with difference in the snow thickness
results in observed lower winter soil temperatures in the
circle than in the intercircle. The thermal difference between
the circle and intercircle areas affects cryogenic suction and
drives water movement from the intercircle to the circle (the
direction of liquid-water motion is shown by blue solid
arrows). Reaching a freezing region, water forms ice lenses
which exert uplifting forces causing deformation of the soil
skeleton. We highlight directions of soil particle velocities
by black dash-dotted arrows in Figure 4. In our model we
exploit a simplest rheological model of the soil skeleton and
assume that its deformations are well simulated by linear
elasticity theory, in which the soil stiffness takes into
account structural differences and lessened soil bonding
caused by the ice lenses.
[10] Besides the thermal differences which cause liquid-

water migration towards the circle, hydraulic properties of
the soil also determine a water flux affecting the liquid-
water migration. One of the key hydraulic parameters is a
coefficient of hydraulic conductivity kh and its dependence

Figure 4. A diagram of fundamental physical processes taking place in a nonsorted circle when it
freezes during the fall. Directions of the water flow, heat flux, and soil displacement are marked by blue
solid, red dashed and black dot-dashed lines, respectively. Location of the 0 !C isotherm is marked by the
solid blue line, whereas location of the permafrost table by the dashed black line.
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on unfrozen water content for partially frozen ground. In
this study we exploit parametrization of kh given by

kh ¼ k0qaw; ð1Þ

where k0 is the hydraulic conductivity of the thawed soil, qw
is the volumetric liquid-water content and a2 [3, 9]
[Konrad and Duquennoi, 1993]. Analyzing this formula
we conclude that the hydraulic conductivity kh increases
with an increase of unfrozen water content qw, a function of
both temperature and porosity. Another hydrological soil
property that is important to sustain water migration is the
availability of water inside the nonsorted circle or at its
boundary. Note that from observations it is known that the
higher values of frost heave have been measured at poorly
drained sites. Therefore, lateral boundary conditions play an
important role in allowing water to migrate into the circle
due to cryogenic suction and to create ice lenses. In our
model, we simulate the nonsorted circles either as
hydrologically open or closed systems by setting to zero
either the pressure or water flux on external boundaries,
respectively. In the next section, we will briefly describe the
general thermo-mechanical model of freezing soil. An
interested reader can consult other works, where the theory
is discussed in detail [Hartikainen and Mikkola, 1997;
Mikkola and Hartikainen, 2001; Jussila, 2006].

3. Review of a General Thermo-Mechanical
Model of Soil Freezing

[11] We consider a mixture of several constituents: water
w, ice i and soil s particles occupying a region Wt in space at
time t, see right plot in Figure 5. We assume that at each
point of Wt constituents coexist with each other and each
of them occupies a part Vk, k2{w, i, s} of a representative
volume V in Wt. We mark all quantities related to the k-th

constituent with subscript k and denote by qk the volume
fraction satisfying qkV = Vk. Note that the nonnegative
volume fractions also satisfy the so-called saturation
condition

qi þ qw þ qs ¼ 1; ð2Þ

or equivalently h + qs = 1, where h = qw + qi is called the
soil porosity. Assuming that all constituents are incompres-
sible, the density rk is equal to !rkqk, where !rw = 1000, !ri =
900, and !rs is a constant depending on the soil type. (We
assume units for all types of physical quantities in S.I.
system of units, unless it is otherwise stated.)
[12] Denoting by vk the spatial velocity, we formulate

mass conservation principles for water, ice and soil particles
as follows

@rw
@t

þr% rwvvwð Þ ¼ r̂;

@ri
@t

þr% rivvið Þ ¼ &r̂;

@rs
@t

þr% rsvvsð Þ ¼ 0; ð3Þ

where r̂ is the rate of mass exchange between liquid water
and ice. Note that the quantity r̂ is not zero only during
freezing or thawing, when phase change between water and
ice occurs. Taking into account that soil particles and ice
move with the same velocity vi = vs = v, we combine
equations in (3) to derive

r % qw vvw & vvð Þð Þ þr % vv ¼ &g
r̂
!ri
; g ¼ 1& !ri

!rw
: ð4Þ

One of the variables in the water mass conservation laws (4)
is v, which can be calculated taking into account soil
rheology. Since the ground heaves slowly with jjvjj « 1,
the velocity v can be approximated by v = @

@t u, where u is
the displacement of soil particles, satisfying a quasi-static
linear momentum conservation principle

r % !! ¼ 0; !! ¼ !̂!& IP ð5Þ

where s is the total stress tensor, !̂! is the effective stress
tensor, P is the pore pressure, and I stands for the identity
second order tensors. Assuming that the soil is isotropic and
undergoes small deformations, we approximate the effective
stress tensor !̂! as follows

!̂! ¼ E

1þ n
""þ n

1& 2n
tr ""ð ÞI

! "

;

tr ""ð Þ ¼ r % uu;

"" ¼ 1

2
ruu þ ruuð Þt
# $

; ð6Þ

where """"" is the strain tensor, E and n are the Young’s
modulus and Poisson’s ratio of the soil, respectively. Here,
the symbol t denotes the transpose operator.
[13] Pore pressure P is defined inMikkola and Hartikainen

[2001] as

P ¼
X

k2 i;w;sf g
pk ; ð7Þ

Figure 5. The schematic cross section (left) of the
nonsorted circle and its computational domain (right).
Segment OO00 is the axis of rotation, AB is the external
boundary, and the dotted line on the left shows the upper
permafrost boundary. Domains 1 and 3 - mineral soil,
Domain 2 - organic soil. Regions Wa and Wt represent air
and soil, respectively. The segment @Was is the ground
surface. The boundary @Wt is the boundary of the
computational domain associated with the nonsorted circle.
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where pk is the thermodynamics pressure defined accord-
ingly to

pk ¼ qk
X

j2 w;i;sf g
rj
@yj

@qk
;

where yk is the Hemlhotz free energy [Landau and Lifshitz,
1969]. Considering a certain ansatz for the Hemlhotz free
energy it is possible to derive that

pk ¼ qk rw
LT

T0

@f

@qk
þ p

% &

; ð8Þ

where p can be considered as hydrostatic type of pressure, T
is the soil temperature, T0 is the temperature of water fusion
and is 273.15 K, L is the latent heat of fusion, and f is a
certain function of volume fractions described later in the
article. A detailed discussion regarding the physical mean-
ings of commonly occurring pressure terms pk, p can be
found in Bennethum and Weinstein [2004]. Let us note that
from a physical point of view the hydrostatic pressure p
means restriction (2) of interpenetration of the constituents
through each other [Fremond and Mikkola, 1991]. Also, we
emphasize that from (8) it is possible to derive a well-
known relationship

pw
qw

& ps
qs

¼ rw
LT

T0

@f

@qw
& @f

@qs

% &

for a binary model consisting liquid and solid. The right
hand side can be interpreted as the surface tension of water
in the pores.
[14] The expression for the function f is based on the

following arguments. Inside a pore, water is bound to the
soil particles with the strength decreasing with distance
from the pore wall. In terms of energy, it is possible to
state that the energy of water decreases with distance from
the soil particle [Hobbs, 1974; Tsytovich, 1975], or equiv-
alently the more strongly bound water requires a lower
temperature to freeze it. Therefore, freezing begins in the
middle of the pore where the water is less bound and
advances towards the pore walls while the temperature
decreases. From private communications with J. Hartikai-
nen and from Mikkola and Hartikainen [2001], the general
shape of the function f should fulfill the following require-
ments: f increases as qw decreases and goes to infinity as
qw approaches zero. This implies that the a certain layer of
the adsorbed water remains unfrozen for all temperatures. In
the work of Mikkola and Hartikainen [2001], the function f
is given by

f cð Þ ¼ a
1

c
& 1

' (2

; qw ¼ ch ð9Þ

where the constant a can be determined by the Clapeyron
relations. In the case of jT & T0j ' T0, the Clapeyron
relation is given by

Lþ Cw & Cið Þ T & T0ð Þ½ ) T & T0
T0

þ g
p

!ri
¼ L

T

T0
f þ c

@f

@c

' (

;

ð10Þ

where Cw and Ci are the specific heat capacity of water and
ice, respectively. This equation gives the relationship
between the temperature T, the pressure p, the porosity n,

and the relative water content c. Assuming that pressure
variations in the freezing soil are relatively small to
influence the unfrozen liquid water content, we suppose
that c does not depend on the pressure p in (10).
Substituting (9) into (10), we derive that

c ¼ 1& 1

a
1þ Cw & Cið Þ T & T0ð Þ

L

' (

T & T0
T

% &&1
2

ð11Þ

for T < T0, and is equal to 1 for T * T0. This formula can
also be used for experimental verification of the function f
[Hartikainen and Mikkola, 1997].
[15] Returning to the mass conservation principle for

water (4), we express the velocity of water relative to soil
particles by the generalized Darcy’s law:

qw vvw & vvð Þ ¼ & kh
g!rw

r pw
qw

' (

þ !rw
LT

T0
rf

' (

;

or

qw vvw & vvð Þ ¼ & kh
g!rw

rpþ Fð Þ;

F ¼ !rwL r qw
T

T0

@f

@qw

' (

þ T

T0
rf

' (

; ð12Þ

where g is the gravitational acceleration, and the quantity F
is a water flux due to the matric potential described in
Huyghe et al. [2004]. Note, in Terzaghi’s consolidation
theory the matric potential F is not considered. The
quantity F vanishes in a homogeneous medium where
variations in qw are small and the pore structure is coarse.
However, near the 0!C isoline where freezing occurs, there
is a large gradient of liquid-water content qw, and
consequently the value of F has to be taken into account.
[16] Since the flux F depends on temperature, we

consider the energy conservation principle for the entire
mixture

Lr̂þ C
@T

@t
¼ r% lrTð Þ: ð13Þ

Here, C is the volumetric heat capacity, l is the thermal
conductivity, and the quantity r̂ is calculated by exploiting
the second and third equations in (3):

r̂ ¼ !ri
@qw
@t

&r% 1& qwð Þvvð Þ
' (

: ð14Þ

Note that for unfrozen soil qw is equal to h, whereas for
partially frozen ground qw < h and is given by the unfrozen
water content curve. This curve specifies the temperature
dependence of qw in partially frozen ground.

4. System of Governing Equations,
Parametrization of Soil Properties, and Boundary
Conditions

[17] In this section we derive a system of governing
equations, which is solved by the finite element method
[Zienkiewicz and Taylor, 1991] in a certain domain. Since
a nonsorted circle has an axial symmetry, we solve the
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governing equations in a 2-D domain, shown in the left
plot in Figure 5. It is the radial cross-section of nonsorted
circle from circle’s axis of rotation OO0 to a lateral
boundary AB located in the intercircle. The circle does
not have organically enriched soil and consists of only
mineral soil that is marked by 1. To describe soil
structure in the intercircle, we mark an organically
enriched layer by number 2, and the mineral soil below
it by 3.
[18] We exploit the heat equation (13), mass exchange

relationship (14) and qw = qw(T, h) to obtain an equivalent
form of the heat equation:

C
@T

@t
þ !riL

@qw
@T

@T

@t
þ @qw

@h
&1

' (

@h
@t

' (

¼ r % lrTð Þ þ riLr % a
@uu

@t

' (

; ð15Þ

where a = h & qw is non zero only for partially frozen
soil. Introducing b = ag & 1, we substitute terms in the
mass conservation principle (4) by expressions given in
(12) and (14) to obtain an equation with respect to pore
pressure p:

g
@qw
@T

@T

@t
þ @qw

@h
&1

' (

@h
@t

' (

¼ r% kh
g!rw

rpþ Fð Þ
' (

þr% b
@uu

@t

' (

: ð16Þ

The above equation is supplemented by an equation

r % !̂! ¼ rP; ð17Þ

which relates the hydrostatic pressure p and deformation
u. Note that the equation pair ((16)–(17)) is commonly
occurring in quasi-static poroelasticity theory. Finally, we

include the mass conservation principle for the soil
skeleton

@h
@t

&r% 1& hð Þ @uu
@t

' (

¼ 0 ð18Þ

with respect to soil porosity h = 1 & qs in order to close
the above system of equations.
[19] Depending on the choice of parameters l, kh, a, E,

and C in ((16)–(18)), it is possible to simulate freezing of
various types of soil. However, since we are interested in
modeling of nonsorted circles, we provide typical values of
these parameters listed in Table 1 for sites along the Dalton
Highway in Alaska. Besides the typical values, it is also
important how these parameters are parameterized. In
equation (15), the thermal conductivity l and the volumetric
heat capacity C are expressed according to de Vries [1963]:

C ¼ rsCs þ rwCw þ riCi; l ¼ lqs
s l

qw
w lqi

i ;

where Ck and lk are the specific heat capacities and thermal
conductivities, respectively. With respect to the rheological
properties E and n, we assume that the soil is consolidated,
and hence the Young’s modulus E for soil compression is
twice as large as for its tension. Also, since area 3 has fewer
ice lenses than areas 1 and 2, area 3 is more structurally
solid and has a larger value of Young’s modulus E. To find
the value of the constant a in (9), we exploit the formula
(11) to express qw as a function of temperature and fit it to
the measured unfrozen water content, see the left plot in
Figure 6.
[20] In order to solve the above system ((16)–(18)) of

partial differential equations, it usually has to be supple-
mented by certain boundary conditions specified at the
ground surface, some depth, and at lateral boundaries of
the nonsorted circle. Before describing the boundary con-

Figure 6. In the left plot, calibration of the unfrozen water content curve by fitting (hollow symbols)
c(T) expressed from (11) to the measured data (filled symbols). In the right plot, temperature dynamics
T surface

circle , T surface
intercircle on the surface of the nonsorted circle at the center of the circle and in the intercircle,

respectively. The time series T surface
circle and T surface

intercircle are records (the five day averaged, filled symbols,
solid line) of ground surface temperatures measured (dotted line, hollow symbols) at 0.01 meter depth.
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ditions, we recall that a single nonsorted circle is an
axisymmetrical cylindrical object. Therefore, in order to
reduce computational time, we model frost-heave dynamics
in a 2-D domain with the axial symmetry. In Figure 5, right
plot, we show a 2-D computational domain Wt associated
with nonsorted circle and with an axis of rotation marked by
OO0. We formulate the boundary conditions with respect to
pressure, temperature, and soil particle displacement on the
axis OO0, the ground surface @Was, at the lateral boundary
AB and at some depth OA as follows.
[21] First, we consider boundary conditions with respect

to temperature T. We assume that the lateral boundary AB is
located far away from the circle, and there is no lateral heat
flow, i.e. n%(lrT) = 0, where n is the outward normal
vector to the boundary. At the axis of rotation OO0 due to
symmetry principle, we impose no heat flux boundary
conditions. At the ground surface @Was and some depth
OA the temperature is set according to its measured values.
Our field observations reveal that the ground surface tem-
peratures within a circle area is constant in lateral directions
and is significantly different from the temperature in the
intercircle. Also, we note that during the freezing period
there is a jump in ground surface temperature at the border
between the circle and the intercircle (see Figure 6). Thus,
we specify the ground surface temperature at intercircle and
circle by Tsurface

circle (t), and Tsurface
intercircle(t), respectively. These

temperatures were measured at 0.01 meter depth below
the surface of mineral soil in the circle, and 0.01 meters
below the surface of organic mat in the intercircle. In
Figure 6, we plot temperature dynamics of Tsurface

circle (x,t)
and Tsurface

intercircle(t). Note that the temperature Tsurface
circle (t) is

typically colder than Tsurface
intercircle(t), since the circle has a

thinner snow and no vegetation cover comparing to the
intercircle.
[22] Second, we specify boundary conditions with respect

to pressure p. Below, in section 7, we show that this
boundary conditions plays a decisive role in determining
frost-heave dynamics. Two standard boundary conditions
for the pressure p are the Neumann, n%rp = 0, and the
Dirichlet, p = 0, boundary conditions. It is possible to check
that if n%rp = 0 and n%rT = 0 are simultaneously specified
on the boundary, then this boundary is water impermeable,
and the condition n%qw(v & vw) = 0 holds. On the other hand
p = 0 models water permeable boundary but also leads to an
additional force term into total stresses s on the boundary
and consequent soil deformations. The pore pressure bound-

ary condition P = 0 would be more realistic than p = 0, but
its implementation would require to overcome certain
difficulties. Since we are interested in modeling the differ-
ential frost heave between the circle and intercircle, we
impose the lateral boundary condition on AB that is ‘‘far
away’’ from the circle, i.e. all disturbances caused by p = 0
on the lateral boundary would not affect the solution in the
circle.
[23] For example, if liquid water is abundant in the area

surrounding the nonsorted circle and it can flow into the
nonsorted circle, then we model water-permeable boundary
conditions by setting p = 0 on the lateral boundary AB.
However, if additional water is scarce or not available, and
a flow of water into the nonsorted circle is negligibly
small, then the water-impermeable boundary condition n %
qw(v & vw) = 0 on AB is modeled by setting n % rp = 0 on
AB. We note that n%rT = 0 is always set on AB because
there is no heat flux across the lateral boundary. Thus, we
define a system to be open if p = 0 is set on AB, and
closed if n % qw(v & vw) = 0 is modeled on AB. On the axis
OO0 and OA we set no water flux boundary conditions. At
the surface @Was, we assume that water can flow in and
out of the domain Wt, i.e. p = 0 on @Was.
[24] Third, we describe boundary conditions with respect

to displacement of soil particles. Since there are no physical
loads applied to the ground surface and it can move freely,
we set s%n = 0 on @Was. On the lateral boundary AB, far
away from the circle, we assume that the soil particles can
move freely in vertical direction, but not in the horizontal
one. Therefore, ur = 0, (s%n)z = 0 is set on AB. Due to
symmetry we impose the same boundary condition on the
axis of rotation OO0: i.e. ur = 0, (s%n)z = 0. Note that since
the segment OA is located in permafrost, no soil motion can
occur, and hence u = 0. We summarize all boundary
conditions in Table 2.

5. Finite Element Formulation and the Fictitious
Domain Method

[25] At any time t, the mixture of water and soil particles
occupying a domain Wt undergoes deformation, which leads
to dynamic geometry of Wt. One of the techniques to solve
the system of equations ((16)–(18)) in the changing-in-time
domain Wt is to implement the fictitious domain method
[Glowinski et al., 1994]. Following this ideology, we embed
Wt into a larger fixed-in-time rectangle domain W [Buzbee et
al., 1971], area OO00CA in Figure 5, right plot. A supple-

Table 1. Description and Range of Soil Properties Values for Nonsorted Circles Along the Dalton Highway in Alaska

Domain Soil Ice Lenses Unfrozen Water ls E % 106 a

1 Mineral Many High content 0.9. . .1.9 1. . .5 1 % 10&4

2 Organic Many Low content 0.3. . .0.8 1. . .5 1 % 10&5

3 Mineral Few High content 0.9. . .1.9 10. . .50 1 % 10&4

Table 2. Boundary Conditions

Variable AB @Was OA OO0

T n % (lrT) = 0 T = Tsurface T = Tbottom n % (lrT) = 0
P n % qw(n & nw) = 0, or P = 0 P = 0 n % qw(v & nw) = 0 n % qw(v & vw) = 0
u ur = 0, (s % n)z = 0 s % n = 0 u = 0 ur = 0, (s % n)z = 0
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ment of Wt in W is called the fictitious domain Wa = W\Wt.
From the physical point of view Wa is related to air which is
being displaced by heaving ground. Note that as the soil
surface heaves, some fixed points in Wa initially represent-
ing air are to be associated with soil Wt. Therefore, the
initial height of Wa has to be taller than the maximum
displacement of the ground surface @Was relative to its
position prior to any heaving. An advantage of implement-
ing the fictitious domain method is that the time consuming
triangulation of Wa into triangles Kf g is completed only
once. A second advantage is that we solve the same set of
equations ((15)–(18)) in both domains Wt and Wa.
[26] We implement a standard finite element method

[Zienkiewicz and Taylor, 1991] and partition the domain
W into regular nonoverlapping triangles Kf g with vertices
at {xi}i=1

m . We consider piece-wise linear continuous func-
tions {8i(x) : x2W}i=1m , such that 8i(xj) = dij, i, j = 1, . . ., m,
and 8i(x) is linear on each triangular. We expand physical
variables T, p, qs and u in a basis of {8i}:

P x; tð Þ +
X

m

i¼1

8i xð ÞPi tð Þ; x 2 ""; t * 0; ð19Þ

where P is one of the physical variables, and Pi is the value
of P at the ith node associated with xi. Therefore the system
of equation ((15)–(18)) can be discretized to form the
following nonlinear system of differential equations

M X tð Þð Þ @X tð Þ
@t

¼ K X tð Þð ÞX tð Þ þ F tð Þ; X 0ð Þ ¼ X0 ð20Þ

where M and K are sparse nonsingular matrices, and X is a
vector containing values of all physical variables at all
nodes. To solve the system in (20) we utilize an implicit time
scheme and Picard iterations [Samarskii and Vabishchevich,
1996]

M Xnþ1ð Þ Xnþ1 & Xnð Þ ¼ Dtn K Xnþ1ð ÞXnþ1 þ F Xnþ1ð Þð Þ;
Xn ¼ X tnð Þ; ð21Þ

where tn is the time at the nth time step, andDtn = tn+1 & tn is
the time increment. Given Xn, we solve the nonlinear
equation (21) with respect to Xn+1 by iterations s = 0,1, . . .,
s0. The iterations are started by the initial guess Xn+1

0 = Xn

and are terminated at s0 when certain convergence criteria
are met. The previous approximation Xn+1

s is used to
compute the consecutive one Xn+1

s+1 as follows. The value of
Xn+1
s is used to evaluate the matrices K(Xn+1

s ) and M(Xn+1
s )

and the vector F(Xn+1
s ), which are then utilized to compute

the solution Xn+1
s+1 of

M Xs
nþ1

# $

Xsþ1
nþ1 & Xn

# $

¼ Dtn K Xs
nþ1

# $

Xsþ1
nþ1 þ F Xs

nþ1

# $# $

at s + 1 iteration. At each iteration the convergence criteria
maxijTn+1,is+1 & Tn+1,i

s j , "1 and maxijjun+1,is+1 & un+1,i
s jj , "2, is

checked, where "1, "2 > 0. If it holds, iteration is terminated
at s0 = sn+1. If the number of iterations exceeds a certain
number then the time increment Dtn is halved. The
convergence criteria is always reached if the time increment
Dtn is small enough [Samarskii and Vabishchevich, 1996].

[27] Since the domain Wt is embedded into a larger
domain W, we are not able to set boundary conditions on
@Was directly, since it is immersed in W. In the framework
of the fictitious domain method, one of the ways to resolve
this problem is given as follows [Buzbee et al., 1971;
Astrakhantcev, 1978; Marchuk et al., 1986]. First, we set
certain boundary conditions on @Wa and then specify
coefficients in ((15)–(17)) such that we have the condi-
tions, listed in Table 2 on the surface @Was.
[28] We deal with setting T = Tsurface on @Was as follows.

Note that the thermal conductivity l is a positive scalar.
Generally, however, it can be any positive definite matrix.
Therefore, in order to set T = Tsurface on @Was, we impose
T = Tsurface on the boundary O00C (Figure 5, right) and set
L = 0, l = diag(lx, ly) in Wa, where 0 < lx ' and 1 ' ly
[Saulev, 1963; Kuznetsov, 2000; Sergueev et al., 2003].
Equivalent to setting the temperature on the ground surface
@Was, we restrict the pressure p = 0 on @Was by letting ri =
rw, L = 0 and kh - 1 in Wa, and putting p = 0 on segments
OO00, O00C and CB. Modeling s%n = 0 on @Was is done
similarly to an approach described in Ramiere et al. [2005]
by imposing the traction free boundary conditions s%n = 0
on @Wf, a small Young’s modulus 0 < E' 1 and zeroing out
the internal body forces in the fictitious domain Wa.
[29] Finally, we consider the continuity equation (18).

Since there are no internal body forces in Wa and s%n = 0 is
on @Wa and @Ws, s = 0 holds in Wa. Therefore, r%u = 0 is in
Wa. Taking a time derivative, we obtain r%v = 0, and hence
the mass continuity equation (18) becomes an advection
equation in Wa:

@qs
@t

þ vrqs ¼ 0:

Note that during freezing, the ground heaves and v%n * 0,
where n is an outward normal vector to Wt on the surface
@Was. Therefore, the characteristics defined by v point
outside the domain Wt, and hence qs in Ws does not depend
on qs in Wa.

6. Hydraulically Closed System, No Suction

[30] In this and the following sections, we analyze the
model both quantitatively and qualitatively. Since depen-
dence of the frost-heave dynamics on thermal, hydraulic
and rheological properties and boundary conditions is
rather complicated, we consider several particular cases.
In this section, we model frost heave of soils in which
migration of water towards the freezing region is not
considered, or F = 0. With this condition, the system
((16)–(17)) becomes

g
@qw
@t

¼ r% kf
g!rw

rp

' (

þr% !ri
!rw

þ gqw

' (

@uu

@t

' (

; r % !̂! ¼ rp:

ð22Þ

From the physical point of view, the left hand side of the
first equation describes the rate of water volume change
during freezing or thawing. For example, during freezing
water expands and ‘‘some material is being injected’’ into
the soil skeleton, which results in the pressure increase and
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in consequent ground heaving. The opposite is also true.
During thawing, ice melts and consequently ‘‘some volume
is being removed’’ from the soil, and hence the pressure
decreases. Recall that for hydrologically closed systems, the
mass of water in the nonsorted circle is conserved by
modeling n % qw(v & vw) = 0 on the external boundary AB.
Hence, the maximum frost heave is equal to the total volume
of the ‘‘injected’’ material which is the difference between
the final ice volume and the initial liquid-water volume.
Since during freezing water expands by g = 1& !ri/!rw, or 9%,
it is possible to verify whether the model conserves the total
water mass. We check that the maximum frost heave is equal
to gV0, where V0 is the volume of liquid water that became
frozen at the end of simulation. To verify the model
quantitatively, we consider the following four cases. In these
case studies, we investigate how various soil properties
affect redistribution of water resulting in the differential frost
heave. Note that in all cases, the initial and boundary
conditions (Tsurface

circle = Tsurface
intercircle, and n % qw(v& vw) = 0 on AB)

are the same, but soil properties in regions 1, 2 and 3 can be
different.
[31] Case 1: Homogeneous soil. We model one-

dimensional freezing of a homogeneous soil which was
initially thawed up to D = 0.5 meters depth. In this case,
the thermal conductivities of frozen and thawed soil is 1.1
and 1.55, respectively; the hydraulic conductivity k0 for
thawed soil is 10&8, the coefficient a determining the
hydraulic conductivity for partially frozen soil is 5, Young’s
modulus is E = 2%106 and the parameter a determining the

unfrozen water content is 10&4. Note that existence of the
unfrozen water content leads to nonzero water flux F , which
was forcefully set to zero in the numerical program. From the
physical point of view, this setting of parameters means that
unfrozen water can exist in the soil pores, but the water
migration is only due to nonzero gradient in the pressure p.
Note that as soon as temperature becomes lower than the
freezing point, ice appears, the volume occupied by water
enlarges, and hence the pressure increases and exerts force
onto the soil skeleton. Figure 7 shows a snap shot of
temperature, pressure and soil porosity at the 15th day after
the beginning of freezing. The middle plot of this Figure
shows a region between 0.05 and 0.5 meters with the
positive pressure increase. Note that in the region below
0.5 meters, the temperature increases, and as a result soil
partially thaws, causing the decrease in the volume occupied
by water, and consequently appearance of the region with
negative pressure. The right plot in Figure 7 shows the snap
shot of soil porosity, which depicts an increase in the initial
porosity of 0.35 in the region where water freezes and a
corresponding decrease where ice melts.
[32] Since the system is hydraulically closed, the maxi-

mum frost heave is equal to

n0 1& !ri
!rw

' (

D; ð23Þ

where n0 is the soil porosity at the beginning of
computations. The maximum frost heave is shown in

Figure 7. The temperature, pressure and soil porosity fields at the 15th day after freezing begins for the
hydrologically closed system. Volumetric water expansion during freezing creates a build up of pressure
in the thawed region.

G03S05 NICOLSKY ET AL.: NUMERICAL MODELING OF NONSORTED CIRCLES

10 of 17

G03S05



Figure 8, left plot. For the homogeneous soil, the frost heave
is uniform and is approximately equal to 1.44 % 10&2 meters,
whereas the frost heave predicted by (23) is 0.55 % 0.35 %
0.09 + 1.73 % 10&2 meters. Note that in derivation of the
estimate (23) it was assumed that all liquid water become
ice in frozen ground. Hence, the difference between the
predicted and simulated frost heave is due to the presence of
unfrozen liquid water in frozen soil, and is partially due to
numerical errors.
[33] Case 2: Heterogeneous rheological properties. We

model soil that has lenticular structure in regions 1 and 2;
the value of Young’s modulus E in domain 3 is larger that in
domains 1 and 2, i.e. in the region 3, E = 2 % 107. Different
values of the Young’s modulus cause water to flow from
more stiff material in region 3 towards the less stiff one in
the center. Note that the average value of the frost heave in
this case is 1.49 % 10&2 meters which is approximately the
same value as for the homogeneous case, see Figure 8.
[34] Case 3: Heterogeneous rheological and thermal

properties. We modify the second case by decreasing the
thermal conductivity for the organic layer, regions 2, to 1.1.
Distinct values of the thermal conductivity do not produce
the differential frost heave with respect to the previous run.
The average value of the frost heave is approximately
1.44%10&2 meters, which is in agreement with predictions
calculated by (23).
[35] Case 4: Heterogeneous rheological, thermal and

hydraulic properties. We further modified the third case.
We decrease the parameter a to 10&5 in region 2, to simulate
the realistic dependence of the unfrozen water content on
temperature of the organic layer. This case shows that the
differential frost heave is more pronounced than in all
previous runs, and there is more significant redistribution
of water during freezing. The redistribution of water is
related to the dependence of the hydraulic conductivity on
the unfrozen water content. In the mineral soil (regions 1
and 3), the unfrozen water content is parameterized by a =
10&4, whereas in the organic soil layer a = 10&5. Consid-
ering that a = 5 in (1), we have that for temperature &2 !C

the hydraulic conductivity in the intercircle is more than 100
times less than in the circle. Therefore, during freezing, the
migration of water through the organic layer is less than
through the mineral soil, and the excessive pressure
increases in the region below the organic layer forces water
into the circle. This produces larger values of differential
frost heave. Nevertheless, the average value of the frost
heave for the entire domain is still only 1.49 % 10&2 meters
in this simulation.
[36] Note that on average the maximum frost heave for

the entire nonsorted circle during all four simulations is the
same (±0.1 % 10&2 meters), and the computed differential
heave is due to water redistribution only. We emphasize that
the difference in Young’s modulus and unfrozen water
content in the circle and intercircle produce the computed
differential frost heave. However, its average value is
usually less than observed in the field. This is due to two
factors: in these simulations, the external boundary was
assumed to be water impermeable; migration caused by
cryogenic suction of liquid water to the freezing front was
absent in the model so far.

7. Hydraulically Open and Closed System

[37] In nature, we observe that the maximum frost heave
is larger at sites where near-surface ground water is abun-
dant [Walker et al., 2004]. To explain this phenomena, we
show that liquid-water migration towards the partially
frozen region as well as the unlimited water supply are
both essential to simulate the observed frost heave. In total,
we model four different cases associated with one of the
following combinations of the boundary conditions (P = 0,
or n % qw(v & vw) = 0) on the external boundary and the
cryogenic suction (F 6¼ 0, or F = 0). Recall that the
pressure boundary condition P = 0 on the external boundary
models flow of water in and out of the nonsorted circle, and
hence the system is called hydrologically open. The condi-
tion P= 0 is approximated by setting p = 0 despite of possible
artificial deformation of soil near AB that is far from the
circle. Similarly, the boundary condition n % qw(v & vw) = 0
defines the hydrologically closed system and is imposed by
setting simultaneously n % rp = 0 and n % rT = 0.
[38] We recall the last case in the previous section, i.e.,

Closed system with no suction, and the heterogeneous
rheological, thermal and hydrological soil properties. In this
case, the computed differential frost heave is 0.03 meters at
the center of the circle and less than 0.01 meters in the
intercircle, see left plot in Figure 8. However, if the boundary
condition with respect to pressure on the external boundary is
changed to model water flow through the boundary, or p = 0,
we model the hydraulically open system with no suction.
[39] Case 1: Open system with no suction. Figure 9, left

plot, shows the computed maximum frost heave in this case.
Note that the maximum frost heave of the hydraulically
open system is smaller than the one of the closed system,
since positive pressure in Wt pushes water outside through
@Wt on which p = 0 is modeled. These numerical experi-
ments show that presence of a water supply at the boundary
of nonsorted circle cannot alone explain the observed values
of frost heave (see Figure 2).
[40] Case 2: Closed system with suction. Due to presence

of the cryogenic suction F 6¼ 0, there is an induced flow of

Figure 8. The maximum frost heave for different
combination of rheological, thermal and hydraulic soil
properties.
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liquid water from the thawed region to the partially frozen
zone. This causes water to move from the thawed region into
the partially frozen one. As a result, the pressure p in the
thawed region decreases, see Figure 10. In the hydraulically
closed system without internal sources of water, the bound-
aries are not water permeable, and hence no additional water
can appear in the nonsorted circle. Consequently, the pres-
sure can decrease indefinitely (see Figure 10, the left plot).
[41] Case 3: Open system with suction. In the hydrauli-

cally open systems with suction, the cryogenic suction
creates similar effects as in the closed systems. Namely, it
forces the flow of water and creates a low pressure zone in
the thawed region. However, unlike the closed systems, the
pressure on the external boundary is fixed p = 0 and water
can flow through the boundary and supply cryogenic
suction forces with water in order to compensate deficiency

in water volume and associated with it negative pressure.
Therefore, in the hydraulically open systems, the pressure in
the thawed region is slightly negative compared to the
closed systems, see Figure 10, right plot. From the right
plot in Figure 11, we observe that the positive pressure
increase exists in the partially frozen region and it creates
the uplifting forces which produce the frost heave.
[42] In this section, we have analyzed the model

((15)–(18)) and conclude that the cryogenic suction forces
create water flow and also produces low pressure zones in
thawed soil. However, the pressure dynamics and hence the
uplifting forces strongly depend on the pressure boundary
condition. The model shows that it qualitatively captures and
predicts commonly occurring physical behavior of both
hydraulically closed and open systems. In the next section,
we analyze the model quantitatively, using some observa-

Figure 9. Maximum frost heave for hydrologically closed (left) and open (right) systems.

Figure 10. Contours of the temperature in !C (solid lines) and pressure in 105 Pa (dotted lines) at the
30th days after freezing, for hydraulically closed (left) and open (right) systems.
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tions and measurements from a study site at the Franklin
Bluffs, Alaska.

8. Modeling Frost Heave of a Nonsorted Circle
at the Franklin Bluffs Site

[43] In this section we apply the general model given by
((15)–(18)) to a nonsorted circle located at the Franklin
Bluff site on the Dalton Highway in Alaska. The nonsorted
circle is approximately 0.6 meter in radius and is developed
in water logged nonacidic tundra. In the intercircle, the
organic layer is 0.2 meter in depth [Walker et al., 2004]
(G. Michaelson et al., Soil properties and patterned
ground across the North American Arctic Transect: Trends
in physiochemical properties, submitted to Journal of
Geophysical Research, 2007). An array of sensors mea-
suring temperature and moisture dynamics in time are
installed at several depths and at several locations across
it. However, since the measured surface temperature
rapidly fluctuates, we compute its 5-day running average
shown in the right plot in Figure 6 and use it as the upper
boundary condition for temperature.
[44] Values of the parameter a that determines the unfro-

zen liquid-water content for mineral and organically
enriched soil are found by fitting qw expressed from (11)
to the measured liquid-water content at 0.35 meter depth in
the circle and 0.15 meter depth in the intercircle, respec-
tively. Thermal conductivities for the frozen mineral and
organically enriched soil are set to be 1.9 and 0.9, respec-
tively. The Young’s modulus E for the mineral soil inside
and outside the circle is 2%106 and 20%106, respectively,
which are typical values for weakly consolidated and
consolidated silt-clay mixture. Since the nonsorted circle
is located in water logged area we model it as a hydrauli-
cally open system. Initial soil temperature distribution with
depth was approximated by measured temperature on 09/12/
2002, and the soil porosity was set to be 0.35. On this day
the active-layer depths in the center of the nonsorted circle

and in the surrounding tundra were 0.8 and 0.6 meter,
respectively.
[45] We simulated the soil freezing from 09/12/2002

through 12/18/2002, when the temperature in the nonsorted
circle became less than &5!C. The calculated liquid-water
content at 0.35 meter depth in the circle and 0.15 meter
depth in the intercircle are compared to the measured data
(see Figure 12). The difference in timing of the modeled and
observed freeze-up at each shown depth is less than 3 days.
We also compare the calculated temperature dynamics to the
measured one (see Figure 13). In general, the discrepancy
between the measured and computed temperature at the
depth of 0.35 meters in the circle is less than 1!C. However,
since we utilized the smoothed surface temperature (see the

Figure 11. The temperature, pressure and soil porosity fields at the 15th day after freezing begins for
the hydrologically closed (left) and open (right) system. Since the water migration through the external
boundary is not permitted for closed system, the pressure decreases and becomes extremely low, whereas
for open systems the migration of water compensates it and hence the uplift is created.

Figure 12. The dynamics of the measured (filled symbols)
and computed (hollow symbols) liquid-water content qw at
the Franklin Bluffs site at some depths in the center of the
circle and in the intercircle.
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right plot in Figure 6) to force the model, we cannot resolve
some details in the measured soil temperature dynamics as
for example around 11/20/2002.
[46] In addition to comparing the measured and computed

soil temperatures, we show the calculated pressure p dy-
namics at the same point, i.e. at the depth of 0.35 meters.
Note that initially when the ground surface temperature was
above 0!C, the pressure p was zero (we assume there is no
gravity and the pressure on the lateral boundary is zero).
However, as soon as ground freezing begins, the cryogenic
suction starts to force water migration from a still unfrozen
part of the active layer to the partially frozen one. Therefore,
the pressure lowers in the entire thawed part of the active
layer; the pressure dynamics has slightly negative values of
p at this time which can be observed in the left plot in
Figure 13. When the freezing front reaches the depth/region
at which the pressure and temperature dynamics are shown
(0.35 meters), the cryogenic suction starts to force water
migration into this still partially frozen region. Soil porosity
consecutively increases, see the right plot in Figure 13. Due
to increase of the water mass, and due to its expansion while
freezing the pressure p continues to increase, see the left
plot in Figure 13. Note that the increased porosity is
associated with formation of ice lenses and development
of the frost heave (the small decrease in soil porosity is due
to numerical regularization of the soil mass conservation
principle). Value of the computed frost heave in the center
of the nonsorted circle is approximately 0.18 meters where-
as in the intercircle it is 0.045 meters. These computed
values are in a good agreement with field observations, see
Figure 2.
[47] In this section, we demonstrated that it is possible to

simulate frost-heave dynamics of a single nonsorted circle
and obtain results which are in agreement with observations.
In the next section, we analyze sensitivity of the model with
respect to parametrization of soil properties.

9. Sensitivity Analysis

[48] From numerical experiments, we note that the frost-
heave dynamics primarily depends on several soil properties
listed in Table 3. In this section, we present the results

obtained from sensitivity study of the frost heave with
respect to values of parameters specifying soil properties.
We define the calculated frost heave at the Franklin Bluffs
site as a reference point against which we compare a series
of numerical experiments. In these experiments we modify
thermal and hydraulic properties, and also dimensions of the
nonsorted circle. In all plots the frost heave associated with
the reference case, i.e. the Franklin Bluffs site, is marked by
black line with circle symbols.
[49] In the first series of experiments, we analyze depen-

dence of the frost heave on parametrization of the unfrozen
water content on temperature for the mineral soil. We
consider several values of the coefficient a associated with
high, medium and low unfrozen water content in the soil.
Note that parametrization of unfrozen water content
depends on soil texture, mineralogy, solute concentration
and other factors. For example, the high unfrozen water
content is associated with fine-grained ground material and
is modeled by large values of a, see the right plot in
Figure 14. For coarse-grained materials, such as sand, the
unfrozen water content sharply depends on temperature near
0!C, see plots associated with small values of a. For each
shown parametrization, we simulate freezing of the non-
sorted circle and compute the maximum frost heave (see the
left plot in Figure 14). In these numerical experiments all
model parameters except for the parametrization of the
unfrozen water content were fixed and equal to the values
related to the Franklin Bluffs site.
[50] From the computed results we observe that the

largest frost heave occurs when soil has high unfrozen
water content. This effect has the following explanation.
Hydraulic conductivity kh of the partially frozen soil
increases, if the unfrozen water content qw becomes higher,

Figure 13. The dynamics of the measured (filled symbols) and calculated (hollow symbols) temperature
at 0.35 meter depth in circle, respectively.

Table 3. Key Parameters in the Model on Which the Frost Heave
Depends

Type Parameters Description

Hydrological a Parametrization of the unfrozen water content
k0, a Parametrization of the hydraulic conductivity

Thermal ls, Cs Thermal conductivity and heat capacity
Rheological E Young’s modulus
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and hence more water migrates through the partially frozen
region due to cryogenic suction flow F (nonlinearly depen-
dent on qw and forms ice lenses. The above-mentioned
dependence of the frost heave on unfrozen water content is
commonly observed in nature, i.e. the sand and gravel are
not frost-heave susceptible soils, whereas silt is. Note that
clays, which have even higher unfrozen water content but
have small hydraulic conductivity, typically are not capable
developing significant frost heave.
[51] In the second series of experiments, we investigate

dependence of the maximum frost heave on parametrization
of hydraulic conductivity kh for the partially frozen ground.
One of the typically unknown parameters is the quantity a
that determines dependence of kh on the unfrozen liquid
water content in (1). Large values of a correspond to small
values of kh, and otherwise. Figure 15 shows the computed
maximum frost heave for several values of a. As in the
previous experiment, we observe that the frost heave is
higher when the value of kh is larger which corresponds to
smaller values of a. As in the first series of experiments, we
observed that the frost heave sharply depends on the soil
hydraulic properties. We note that the frost heave does not
significantly depend on values of the thermal conductivity of
mineral soil, as it was shown in section 6 in the third case.
[52] In our field experiments, we observe that at several

sites circles have a thin horizon of the organic soil. From the
physical point of view, this layer represents an additional
thermal resistance and changes soil temperature regime.
Therefore, in the third series of experiment, we analyze
dependence of the maximum frost heave on presence of
organically enriched soil in the nonsorted circles. We
consider several configurations of organic layers varying
in their thicknesses. We additionally place on top of the
nonsorted circle an organic layer which uniformly covers
the circle and intercircle. The soil thermal, hydraulic and
rheological properties of this additional layer are identical to
the properties of the original organically enriched soil in the
intercircle for the Franklin Bluffs site. Note that increase in
insulation layer causes decrease in the active-layer thick-
ness. From our field studies, we observed that each addi-
tional 0.02–0.03 meters of the organic material results in

0.04–0.05 meter decrease of the active layer. In the left plot
in Figure 16, we show the maximum frost heave developed
for various thicknesses of the additional organic layer. We
emphasize that observed results are in agreement with
observations at nonsorted circles along the Dalton highway
in Alaska. For example, the scarcely vegetated circles at the
Franklin Bluff area heave by 0.15–0.20 meters, whereas
moderately vegetated circles at the Happy Valley site
develop only 0.07–0.10 meters of heave during winter.
Also, field experiments [Kade et al., 2005, 2006; Kade and
Walker, 2008] at Sagwon Hills involved both the removal
and addition of vegetation on nonsorted circles. The remov-
al of vegetation at this location resulted in 1.4!C increase in
mean summer soil temperature compared to control, and a
6% increase in the depth of the thaw layer, and a 26%
increase in frost heave. The addition of 0.1 meter thick moss
layer results in the opposite effect, a 2.8!C decrease in the
mean summer soil surface temperature, a 15% reduction in
the thaw layer, and a 52% decrease in heave. Despite the

Figure 15. Sensitivity of the frost heave on parametriza-
tion of the hydraulic conductivity.

Figure 14. Sensitivity of the frost heave on parametrization of the unfrozen water content.
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fact that the numerical model is focused on nonsorted
circles at the Franklin Bluffs site and the field experiments
were conducted at the Sagwon Hills site (these sites are only
30 kilometers apart and have similar soil and climate
conditions), results from these studies show qualitative
agreement, and similar quantitative behavior of frost-heave
reduction.
[53] In the fourth series of experiments, we investigate

sensitivity of frost heave on the radius of the nonsorted
circles. We calculate the frost heave for circles which have
0.1, 0.2, 0.3, . . ., 1.0 meter radius. Our calculations support
observations which reveal that small scale nonsorted circles
heave less comparing to the large diameter ones. The
maximum computed frost heave is for circles with the
radius of 0.6 meters, see the right plot in Figure 16. For
circles with the radius larger than 0.6 meters, the maximum
frost heave slightly decreases since liquid water has to
migrate to the center of the nonsorted circle longer from
the lateral boundary where water is abundant. Smaller
values of the frost heave, that is computed in the center of
the nonsorted circle with a large radius, can promote
development of live vegetation.

10. Conclusions

[54] We present a numerical thermo-mechanical model of
differential frost heave with special emphasis on simulating
biocomplexity of nonsorted circle ecosystems. Unlike other
models that study 1-D ice-lens formation, we consider the
2-D effects of soil freezing. Heterogeneity in soil properties
and surface conditions result in a differential frost penetra-
tion and 2-D temperature fields. Therefore, the cryogenic
suction results in horizontal water redistribution between
intercircle and circle areas. Despite the simplicity (no
diffusion of salts, simplified rheology) the model captures
and successfully simulates temperature and water dynamics
in soil. Also, the model satisfactorily simulates the ground
surface motion in relation to frost heave and explains the
dependence of the amount of frost heave on specific
environmental properties of this ecosystem.

[55] Model was tested using observational data obtained
from several sites within the Permafrost/Ecological North
American Arctic Transect. We obtained a good comparison
between simulated and observed dynamics of physical
processes in the nonsorted circle at the Franklin Bluffs.
The model also qualitatively represents ‘‘nonheaving’’ non-
sorted circles at the Howe Island site.
[56] The simulated frost heave is sensitive to hydrological

soil properties, and to change in the vegetative insulation
layer within the circle and intercircle areas. The results of our
sensitivity analysis with respect to addition/removal of
vegetation layer to/from the surface of a circle are well
correlated with field observations, where a layer of organic
material was added to the nonsorted circle, or removed. The
performed sensitivity analysis provides deeper understand-
ing of functioning of the nonsorted circle as an ecosystem.
[57] Based on results from the sensitivity analysis, we

conclude that the most active development of differential
frost heave takes place for nonsorted circles within water-
logged area with strong upper-soil-layer heterogeneity
caused by living vegetation. The most important driver of
the nonsorted circle ecosystem is the presence of vegetation
that, over a significant time, changes the soil mineralogy
and thermal and hydrological soil properties, thus changing
the amount of differential frost heave and reducing or
enhancing all biogeophysical processes responsible for the
formation and evolution of the nonsorted circles.
[58] Testing of our numerical model provides an assur-

ance that this model can be used to study the impact of
changes in major natural geophysical and biological drivers
on specific properties and dynamics of the nonsorted circles
in different ecological systems. The presented model pro-
vides a very powerful tool to investigate possible future
changes in this ecosystem in relation to observed and
projected climatic and biological changes in the Arctic.
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