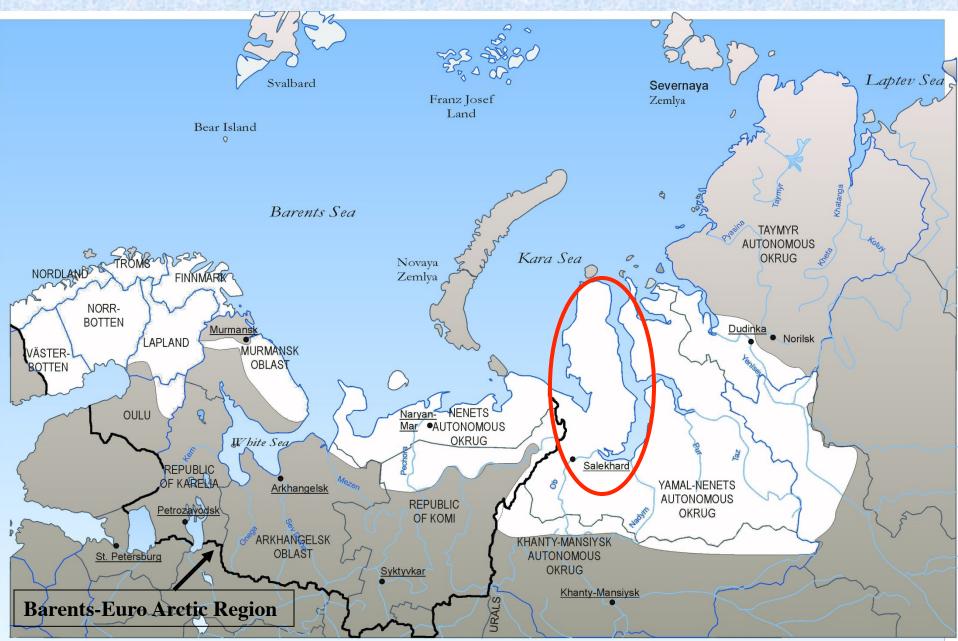
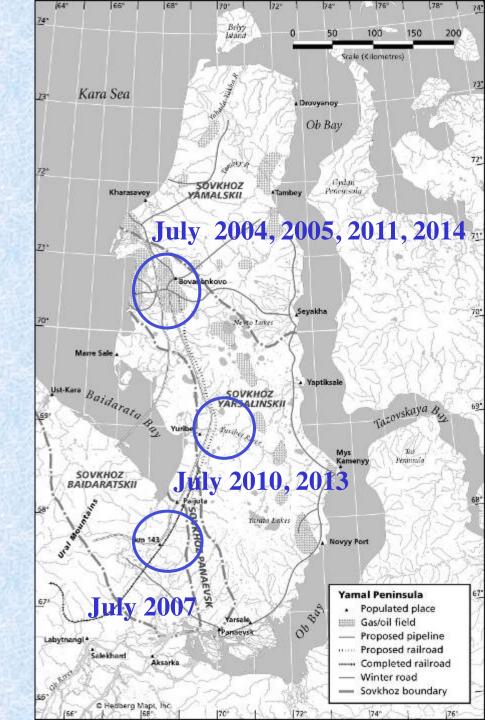
Rapid Arctic Transitions related to Infrastructure and Climate Change (RATIC) Workshop: Arctic Change 2014, Ottawa,

Landcover changes in the Bovanenkovo gas field and Cultural Resilience of Social-ecological Systems of the Nenets


Kumpula, T.* & B. Forbes**
*Department Of Geographical and historical studies, University of Eastern Finlance
** Arctic Centre, University of Lapland


UNIVERSITY OF EASTERN FINLANI

Reindeer herding areas of Northwest Eurasia

Research sites in Yamal

- Bovanenkovo, Mordy-jaha
- Yuribei river
- Laboravaja

Drivers of land cover and land use change on Yamal:

- 1) anthropogenic: petroleum related expansion of infrastructure and traffic
- 2) anthropogenic-natural: intensification of reindeer husbandry, impact to vegetation
- 3) natural: climate change related, changes in snow conditions, changes in vegetation, intensification of permafrost melting related processes, e.g. cryogenic landslides and thawing lakes

Bovanenkovo gas field

Amderma

Mininskaya-2 Obruchevskaya

Vaygad

Kharasave

Vorkuta

Pavuta

Obskava Salekhard

- Bovanenkovo gas field was found in 1972
- Geological surveys of the gas field began to accelerate in 1980's
- The first construction phase started in 1987
- 2002 Gazprom identified the Yamal Peninsula as a region of strategic interest to the company'
- Bovanenkovo Gas Field (BGF) opened at the end of 2012 •

Bovanenkovo gas field

Yarsalinskii sovkhoz

Yamalskii sovkhoz

CALLS THE IS THE TRACE

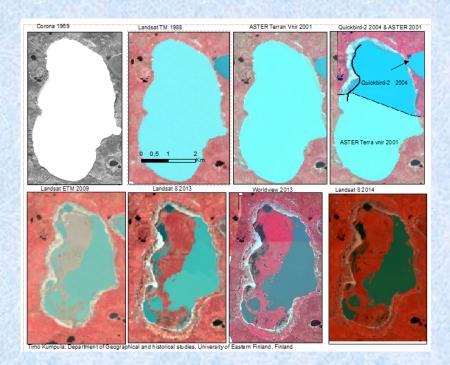
03. Héű-To (Max-To) м. Белы

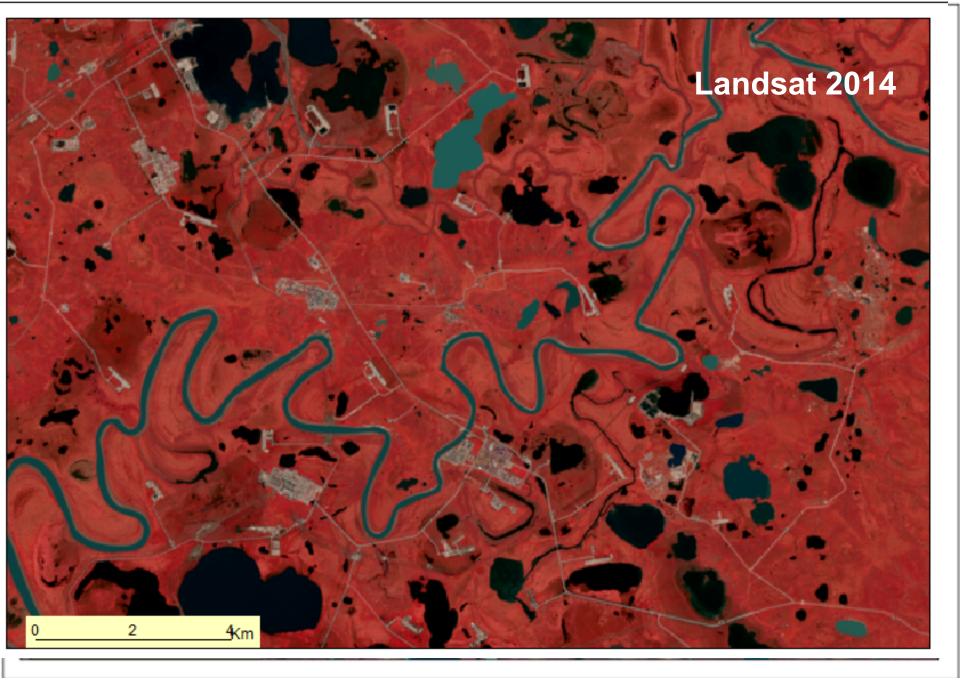
5050

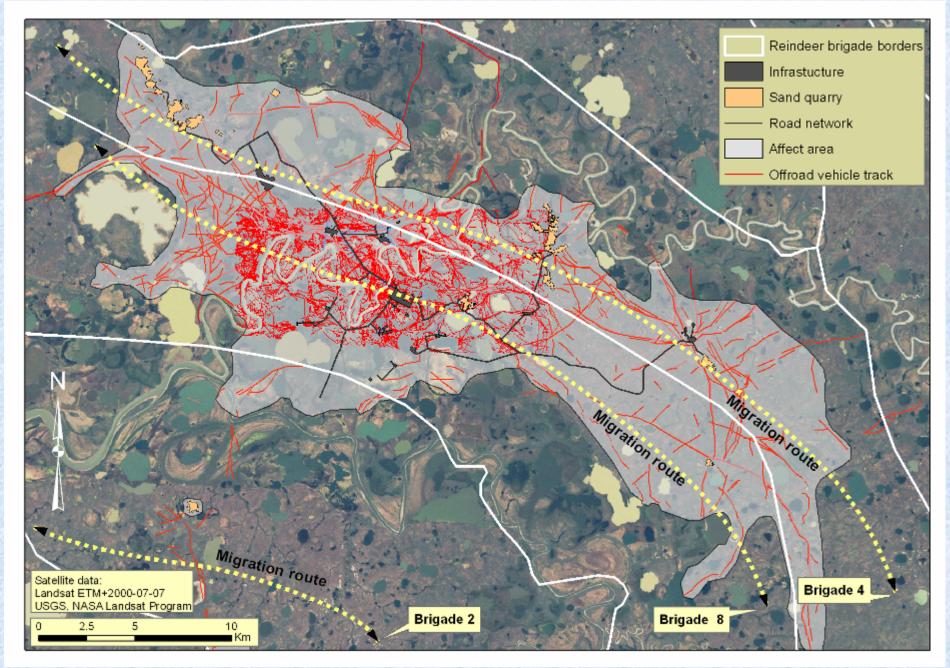
Panaevsk sovkhoz

Data collection and analysis

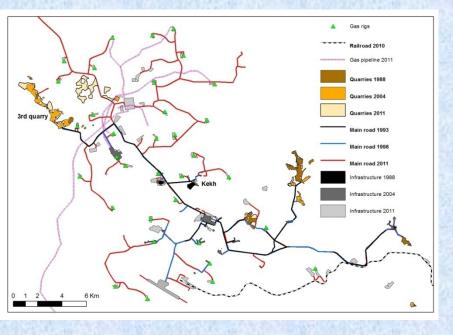
- Ground truth for image analysis, (LAI, Spertrometer)
- Vegetation mapping
- Biomass collection
- Dendrochronical data (salix) collection
- Participatory observation
- Interviews

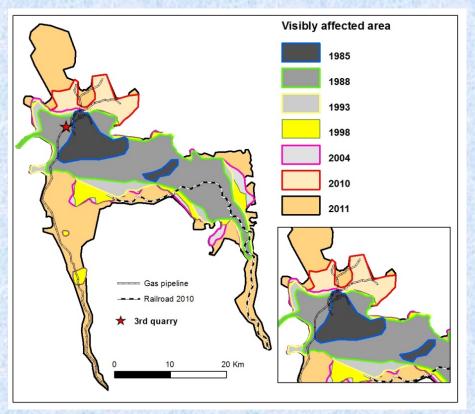


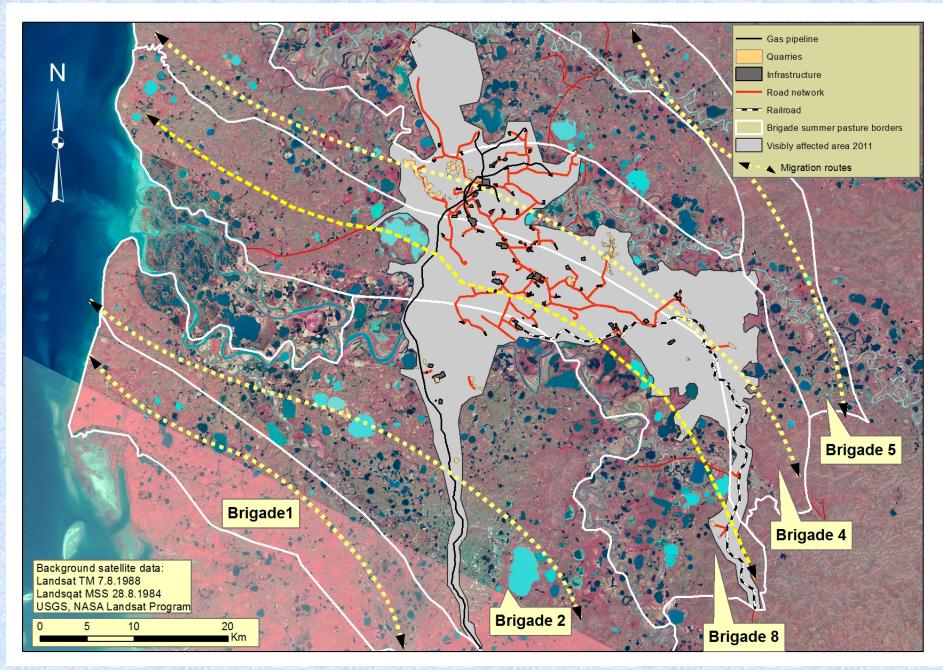

Remote sensing data


- Corona 1969
- Aerial photographs
- Landsat TM 1985
- Landsat MSS 1985
- Landsat TM 1988
- Landsat TM 1990
- Landsat TM 1994
- SPOT 1993
- SPOT 1998
- Landsat ETM 1999
- Landsat ETM 2001
- ASTER TERRA 2001
- Quickbird-2 2004
- Landsat TM 2009
- Landsat TM 2011
- Landsat ETM8 2013
- Worldview-2 2013
- Landsat 2014
- Terra XS 2014
- ALOS prism DEM 2007

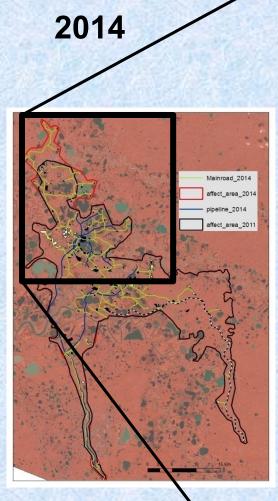
1970'-1990's 28 August 28 July 07 August 20 july 1 August 29 July 19 July July July 21 July 15/28 July July 15 July July 15 July July July




Quiebird-2 panchromatic (63 cm resolution) 15.7.2004 (Yamal) 4 chums with sledges


Forbes, Stammler, Kumpula, Meschtyb, Pajunen & Kaarlejärvi (2009).

Kumpula et al. (2012) Remote sensing


Impacts of Bovanenkovo gas field to brigades 2, 4 and 8 of Yarsalinski sovhoz: Brigade 4:


- Summer pasture July-August 1019 km²
- 225 km² in Bovanenko gas field affected area

Brigade 8:

- Summer pasture July-August 796 km²
- 200 km² in Bovanenko gas affected area

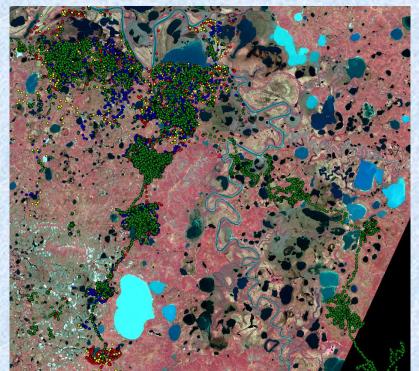
	Brigade 4	Brigade 8	Brigade 2
area affected 2004 km ²	225	200	29
area affected 2010 km ²	228	240	29
area affected 2011 km ²	300	295	147
Area of summer pasture km ²	1019	796	1208

Table 3. Estimations of the spatial extent of industrial impacts. Satellite images used areLandsat MSS/TM/ETM, SPOT, ASTER VNIR, Quickbird-2 and GeoEye.

Satellite/year	MSS	TM	SPOT	SPOT	ASTER	Quicbird-2	GeoEye/ETM	TM	Lands at 8
Form of activity	1984	1988	1993	1998	2001	2004	2010	2011	2014
Buildings & yards km ²		0.4	0.6	1.9	1.9	2.1	5.4	9.8	12,0 km ²
Main roads length km		2	49	80	81	81	154	212	12,0 km ²
Road area coverage km ²		0.6	1.8	2.9	3	3	5.8	8.0	
Sand quarries km ²		1.8	3.5	3.5	3.5	4.3	6.6	9	9,5 km ²
Pipeline right of way km						16	16	103	131 km
Pipeline corridor km ²						0.6	0.6	4.4	6,6 km ²
Railroad km								59	
Railroad area coverage km ²								3.6	59 km
Off-road track length km	38	348	380	410	590	2,400	2,989	3,136	3,6 km ²
Off-road track area coverage km ²	3	14	16	17	24	44	49	54	1 km^2
Disturbed vegetation 1988–2011 km ²		1.9						0.3	1 Km
Airport km ²								1	904 km ²
Visibly affected area km ²	70	320	375	420	440	451	509	836	37,7 km ²
Permanently changed area km ²		2.8	5.9	8.4	8.3	8.9	18.4	36.1	

Kumpula et al. (2012) Remote sensing

While Nenets SESs have adapted well to a variety of pressures over the last few decades, can we identify cultural aspects of resilience that have helped them to persist?



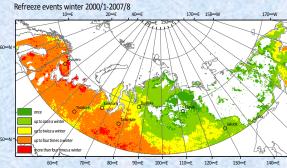
Factors contributing to resilience

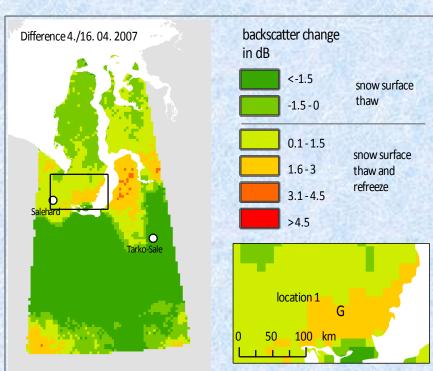
- adaptation to use all available resources, such as fish and game
- the nomadic tundra population is growing and herding popular among youth
- Accepting exogenous drivers (e.g. extreme weather events and or degradation of territory) and coping with them
- Institutions administering reindeer herding have remained flexible, especially on Yamal Peninsula
- This affects factors such as herd demography, mobility and energetics.
- Herders' own (collective) agency is critical, most recently in the post-Soviet shift to smaller, privately managed herds to better utilize available pastures in a highly dynamic environment experiencing rapid socio-economic, climate and land use change

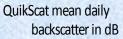
Reindeer grazing impact on tundra vegetation, willows and landslides

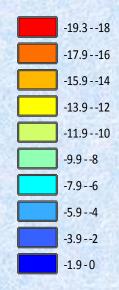
- Reindeer feaces pellet count
 - data collected in Mordy jaha in summer 2013 and 2014
- GPS collar monitoring of pasture use
 - GPS collars installed in March 2013
 - reading interval 1h (5 mins in summer)

Data collection: Anna Skarin (University of Uppsala, Sweden)


Climate change impacts to reindeer herding Rain on Snow (ROS) and icing of pastures


Ecological Applications, 20(8), 2010, pp. 2346–2358 © 2010 by the Ecological Society of America


Detection of snow surface thawing and refreezing in the Eurasian Arctic with QuikSCAT: implications for reindeer herding


Annett Bartsch,^{1,5} Timo Kumpula,² Bruce C. Forbes,³ and Florian Stammler^{3,4}

¹Institute of Photogrammetry and Remote Sensing, Vienna University of Technology, Vienna 1040 Austria ²Department of Geographical and Historical Studies, University of Eastern Finland, Joensuu 80101 Finland ³Arctic Centre, University of Lapland, Rovaniemi 96101 Finland ⁴Scott Polar Research Institute, Cambridge University, Cambridge CB21EP United Kingdom

Rain on Snow and icing of pastures winter 2013-2014

-Large scale icing -about 20 000 reindeer died

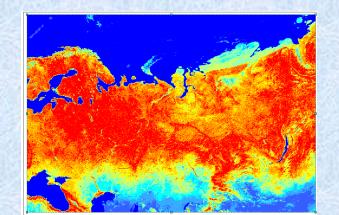
Массовый падеж северных домашних оленей зафиксирован в ямальской тундре

8

Новости Урала 15 января, 16:13 🕚 UTC+4

Причиной стало сильное истощение и хроническое недоедание животных

an Dearwise A finishing and a life and a life of a start in a grant to observe a larger tradition of the start of the sta


Deciduous shrub growth and the greening of the Arctic in West Siberia

- Salix dendro data collection

- NDVI data were derived from the NOAA AVHRR meteorological satellites.

-MODIS at 16-day intervals and 2000-2011 with 250m resolution

- Very High Resolution images from Quickbird-2, and Worldview-2 (resolution 1-2,4 m)

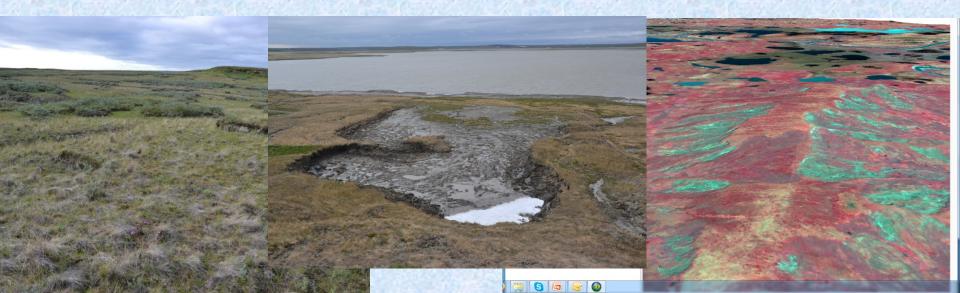
nature climate change

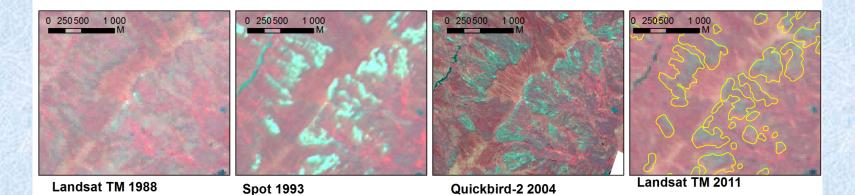
LEIIEK PUBLISHED ONLINE: 3 JUNE 2012 | DOI: 10.1038/NCLIMATE1

Eurasian Arctic greening reveals teleconnections and the potential for structurally novel ecosystems

Marc Macias-Fauria¹, Bruce C. Forbes²*, Pentti Zetterberg³ and Timo Kumpula⁴

Past and ongoing projects


- NASA LULCC project: Yamal LCLUC Synthesis: A synthesis of remote-sensing studies, ground observations and modeling to understand the social-ecological consequences of climate change and resource development on the Yamal Peninsula, Russia and relevance to the circumpolar Arctic (Skip Walker) (2014-2016)
- Resilience in Social-Ecological Systems of Northwest Eurasia RISES (Finnish Academy 2012-2016) (Bruce Forbes)
- Terra XS data Project: Combining remote sensing and field studies for assessment of landform dynamics and permafrost state on Yamal (Annett Bartsch)
- Study of petroleum explorations impacts to reindeer herding: *Environmental and Social Impacts of Industrialization in Northern Russia (ENSINOR)* (Finnish Academy 2004-2007) in YNAO and NAO (Bruce Forbes)
- NASA LULCC project: Land-cover and Land-use Changes on the Yamal Peninsula, Russia (Skip Walker) (2007-2012)


Landslides in central Yamal, Mordy Jaha river

- Mapping of landslides with remote sensing
- The key research area is located on west bank of Mordy-jaha river where landslides can be found along the north-south ridge which is about 20 km long and 2-4 km width
- In late 1980's occurred a major landslide event

- Landslide detection from optical multispectral and multiscale remote sensing imagery
- Field data collection of spectral characteristics (ASD spectometer)
- Landslide –willow (*salix*) dynamics (dendrochronology, biomass, Leaf Area Index LAI 2200)
- Landform dynamics, eg. lakes
- TerraXS data analysis:
 - landslide slope charateristics, willow thickets
 - Combining TerraXS with optical RS data analysis

